Fisheries and global climate change

Issue

The ocean varies naturally The primary source of food from the oceans is from capture fisheries and aquaculture. The biological productivity which fisheries exploit varies from place to place and over time in relation to oceanographic conditions which change naturally, from year to year and seasonally. Some natural fluctuations are less frequent, changing only after decades. In addition, the oceanic environment is affected by long-term global climate change caused by both natural processes and human impacts, such as the emission of greenhouse gasses. Any effects of such climate change on fisheries will occur in a sector already characterized on a global scale by full utilization, overcapacity of usage and sharp conflicts between fleets and among competing uses of marine ecosystems. Climate change impacts are likely to exacerbate existing stresses on marine fish stocks, notably fishing pressure, diminishing wetlands and nursery areas, pollution, and UV-B radiation. The effectiveness of actions to sustain fisheries depends on our capacity to distinguish among these stresses and other causes of change. This capacity is insufficient and, although the effects of environmental variability are increasingly recognized, the contribution of climate change to such variability is not yet clear.

Natural variation obscures global change and both affect fisheries development and management outcomes. An overarching concern is that society will not recognize the effects of climate change because the natural variability of the marine environment and fisheries production is so great. Only in the last few years has it become clear that there are climate patterns of a decadal scale that affect production on an ocean basin scale, perhaps even globally for some species. Will global climate affect the frequency of these natural oscillations or change their magnitude? Presently there is no answer. However, society has the opportunity to monitor environmental changes and learn about their effects, so that better production forecasts can be made for fisheries managers.

Potential effects Scenarios developed by the Intergovernmental Panel on Climate Change (IPCC) forecast - with indications of "confidence" levels - the following effects:

  • Globally, saltwater fisheries production is hypothesized to be about the same, or significantly higher, if resource management deficiencies are corrected. Also, globally, freshwater fisheries and aquaculture at mid-to-higher latitudes could benefit from climate change. Medium Confidence
  • Local shifts in production centres and mixes of species in marine and fresh waters are expected as ecosystems are displaced geographically and changed internally. High Confidence
  • Positive effects such as longer growing seasons, lower natural winter mortality and faster growth rates in higher latitudes may be offset by negative factors such as a changing climate that alters established reproductive patterns, migration routes, and ecosystem relationships. High Confidence
  • Changes in abundance are likely to be more pronounced near major ecosystem boundaries. The rate of climate change may prove a major determinant of the abundance and distribution of new populations. Rapid change due to physical forcing will usually favour production of smaller, low-priced, opportunistic species that discharge large numbers of eggs over long periods. High Confidence
  • There are no compelling data to suggest a confluence of climate-change impacts that would affect global production in either direction.
  • Marine stocks that reproduce in freshwater (e.g. salmon) or require reduced estuarine salinity will be affected by changes in temperatures and the amount and timing of precipitation and on species tolerances. High Confidence
  • Where ecosystem dominances are changing, economic values can be expected to fall until long-term stability (i.e. at about present amounts of variability) is reached. Medium Confidence
  • Subsistence and other small-scale fishers who lack mobility and alternatives, and are often the most dependent on specific fisheries, will suffer disproportionately from changes. Medium Confidence
  • Because natural variability is so greatly relative to global change, and the time horizon on capital replacement (e.g. ships and plants) is so short, impacts on fisheries can be easily overstated, and there will likely be relatively small economic and food supply consequences so long as no major fish stocks collapse. Medium Confidence
  • The sensitivity to global change will vary between fisheries. The most affected will be fisheries in small rivers and lakes, in regions with larger temperature and precipitation change and on anadromous species. They will be followed by fisheries within Exclusive Economic Zones, particularly where rigid access regulations reduce the mobility of fishers and their capacity to adjust to fluctuations in stock distribution and abundance, fisheries in large rivers and lakes, fisheries in estuaries (particularly where there are species without migration or spawn dispersal) and in the high seas.

More specifically for fisheries, climate change-related warming may result in:

  • longer growing seasons and increased rates of biological processes - and often of production;
  • greater risk of oxygen depletion;
  • species shift to more tolerant of warmer and perhaps less-oxygenated waters;
  • redeployment or re-design and relocation of coastal facilities;
  • coastal cultures may need to consider the impacts of sea-level rise on facilities and the freeing of contaminants from nearby waste sites;
  • changes in precipitation, freshwater flows, and lake levels;
  • introduction of new disease organisms or exotic or undesired species;
  • establishment of compensating mechanisms or intervention strategies;
  • a longer season for production and maintenance; and,
  • modification of aquaculture systems, e.g. keeping them indoors under controlled light, may be needed more often to protect larvae from solar UV-B. In addition, several of the above and other factors, such as competing demand for coastal areas, may argue for technological intensification in ponds and non-coastal facilities.

Possible solutions

While the fisheries sector cannot do much to impede or seriously affect global climate change, it could contribute to its stabilization or reduction, and to mitigating its effects. Climate changes notwithstanding, there are several actions to consider. The most important strategies are those needed to promote sustainability and which are useful and practical, even in the absence of climate change. Further, when developing strategies, we need to consider both the problems and the opportunities that are being presented, in the following way:

  • active participation at global and regional level, to ongoing debate and collaboration, to obtain the best possible information of fisheries-related impacts;
  • allocating research funds to analyze local and regional potential changes in resource magnitude and composition and likely socio-economic impacts;
  • sharing information obtained with the sector on potential changes, their scale and possible effects on resources and fisheries;
  • establishing institutional mechanisms to enable or enhance the capacity of fishing interests (fleets and other infrastructures) to move within and across national boundaries as a consequence of changes in resources distribution. This implies developing bilateral agreements;
  • preparing contingency plans for segments of the sector that might not be able to move, particularly for disadvantaged areas and small-scale fishers lacking mobility and alternatives;
  • developing effective national and international scale resource management regimes and associated monitoring systems to facilitate adaptation of exploitation regimes in a shifting environment;
  • strengthening regional fisheries management organisation and other mechanisms to deal with cross-border stocks;
  • integrating fisheries management into coastal areas management to ensure that fisheries needs are taken up when dealing with protection of coastal areas from sea level rise, etc. For instance, to ensure that public works to protect coastal areas do not unnecessarily obliterate nursery areas important to fisheries;
  • analyzing aquaculture sustainability in an ecoregional context, forecasting changes in productivity or resistance and in required related changes in culture systems, cultured species or delocalisation of productive systems. Particular attention should be given to coastal investments;
  • fostering interdisciplinary research, with scientists meeting periodically to exchange information on observations and research results, and meeting with managers to ensure the proper interpretation of results and the relevance of research; and,
  • foreseeing and planning infrastructure adaptations. It could be expected that, in response to shifting populations and species, the industry will respond with faster, longer-range fishing craft, install on-board processing equipment to replace endangered coastal ones or use floating processors when feasible, and find alternative means of transport when coastal roads are flooded and relocation is not possible. Governments should also consider constructing and maintaining appropriate infrastructure for storm forecasting, signalling systems and safe refuges for dealing with possible rising sea level and increased storminess. There may be opportunities to take advantage of reduced need for ice strengthening of vessels and infrastructures in a warmer climate, except perhaps for areas with increased icebergs.

Action taken

The international activity already related to climate change is very intense as can be seen looking at the various Web sites dealing with it. Most of the action refers, however to research and international agreements. Research focuses on tracking indicators of change, studying cause-effect relationships, modelling, assessing and forecasting impacts. International agreement such as the UN Framework Convention on Climate Change aim at mobilising attention and commitments of governments to reduce greenhouse gases. Little or no action has been taken by governments to mitigate the possible effects, and information on contingency plans is lacking.

In fisheries, while climate change has been addressed occasionally in scientific literature,the subject has not yet been formally addressed by most industry or fishery management administrations. However, the fishery sector and fisheries research are fairly advanced in this matter, through their dealing with the El Niño, decadal changes in ocean environments and other longer terms fluctuations in fisheries environments and resources. The observation programmes, scientific analyses, computer models, the experience gained and strategies developed by fishers, processors, fishfarmers, and management authorities confronted with the problem of medium-to-long-term natural fluctuations, is extremely useful for dealing with climate change. Many of the principles and strategies developed to deal with "unstable" stocks will be of use when having to deal with climate change.

The Global Ocean Observing System (GOOS) has been established under the aegis of IOC-UNESCO.

Outlook

Changes remain uncertain and competing theories are still developing as to the reality of the change, its magnitude and its mechanisms. Progress in implementing the UN Framework Convention on Climate Change is slow and resistance from some of the major players to pledge reduction of gas emissions remains a stumbling block. It is not possible to forecast how the question will evolve.

Fisheries will be able to move faster towards specific assessments and contingency plans when more precise and reliable predictions are available on projected climate change with at least a regional resolution. In the meantime, dealing effectively with medium-term natural changes offers a good "training field".

Related Resources